Electroencephalogram Signals Classification by Ordered Fuzzy Decision Tree
نویسندگان
چکیده
A new algorithm for Electroencephalogram (EEG) signals classification is proposed in this paper. This classification is used for automatic detection of patients with epilepsy in a medical system for decision support. The classification algorithm is based on Ordered Fuzzy Decision Tree (OFDT) for EEG signals. The application of OFDT requires special transformation of EEG signal that is named as preliminary data transformation. This transformation extracts fundamental properties/features of EEG signals from every sample and reduces dimension of the samples. The accuracy of the proposed algorithm was evaluated and compared with other known algorithms used for EEG signal classification. This comparison showed that the algorithm proposed in this paper is comparable with existing ones and can produce better results than others.
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملData Mining Using Intelligent Systems: an Optimized Weighted Fuzzy Decision Tree Approach
Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processi...
متن کاملComparing different stopping criteria for fuzzy decision tree induction through IDFID3
Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کامل